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AbstrKt-It is supposed that a spherical or circular-cylindrical cavity is bored in an infinite hydrostatic
field. Space and time variation of stress was determined in a previous paper on the basis of an
elasto-visco-plastic four·element model of distortional material behavior. It was assumed that a rigid wall
was installed in contact with the cavity surface instantaneously upon boring. In the present paper the
effects of wall deformability and delayed installation are taken into account in determining the final state
allained when viscous action terminates. A simple closed form solution is derived from a time·independent
analysis of linear elasticity followed by linear work-hardening. The interpretation of the time·independent
solution as representing the final state justifies classical elastic or elastic-plastic analyses in the viscosity­
dependent problems of tunnels and underground structures.

NOTATION

b radius of elastic·inelastic boundary
G modulus of shear rigidity
k yield stress in shear
p pressure
R radius of cavity
r radial coordinate
t time

U inward displacement of cavity surface
uradial displacement
"y shear strain
E extensional strain
Tj coefficient of viscosity
IJ. modulus of shear rigidity
u tensile stress

Subscripts
r radial component
z axial component
8 circumferential component
o cavity excavation
I wall installation

x final state

INTRODUCTION
Rational proportioning of lining around a tunnel or underground opening requires the deter­
mination of the load exerted by the earth. Based on a four-element model, a closed-form
solution has been derived in a previous paper on the elasto-visco-plastic stress distribution in
the vicinity of a cavity of a sphere or circular cylinder [I]. It has been assumed that the cavity is
bored in an infinite hydrostatic field and strengthened instantaneously by installing a surround­
ing wall of infinite rigidity. Spontaneous elastic response upon boring is followed by a stress
relaxation phenomenon and a surface traction develops, in the course of time, acting on the
wall as a load, which be.comes maximum when viscous action terminates. However, both
deformability of the wall and delayed installation influence the stress distribution, reducing the
load. It is the objective of this paper to examine and incorporate these effects in the analysis to
determine the final state; a simple closed-form solution of the viscosity independent final state
is of much practical use in civil and mining engineering. Salamon discusses the design of a
circular tunnel on the basis of elasto-visco-plastic mathematical models of different kinds. This
reference has been brought to the author's attention since the completion of his previous paper
and should be included in its literature on time-dependent analyses [2].
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A time-independent analysis suffices to determine the final state. The analysis does not
distinguish the problem in question from the circumstance where an elastic-plastic medium
with an internal cavity is subjected to radial loading at a distance and hence is applicable to that
circumstance. The analysis simulates a body of a structure or structural member which is
perforated, is strengthened and carries a load. It is worth noting that the interpretation of the
results of a time-independent analysis as representing the final state of a viscosity dependent
medium justifies the application of classical elastic[3] or elastic-plastic[4] approaches to the
problems of underground excavations; those approaches are unable to account for the actual
order of loading, boring and installation.

ASSUMPTIONS AND KINEMATIC RELATIONS

A cavity of a sphere (case a) or of a circular cylinder (case b) with radius R is assumed to be
bored just prior to time t = 0 in an infinite medium which is under constant hydrostatic pressure
p. The medium is supposed to be incompressible, uniform and isotropic and its distortional
behavior is represented by the four-element model of Fig. 1. It is composed of a linear spring
with modulus of rigidity G in series with the parallel combination of a linear spring with
modulus of rigidity,.,., a Newtonian dashpot with coefficient of viscosity TJ and a perfectly
plastic slider. The slider is free from the influence of hydrostatic pressure and yields under
tensile stress 2k in case a and under shear stress k in case b. In order to apply the analysis to
the case of all-around tension instead of hydrostatic pressure, it is only necessary to replace p
and k by - p and - k, respectively. Among other assumptions are isothermal condition, small
deformation, and absence of body force. It follows from spherical symmetry in case a that the
radial and any two tangential directions are principal directions so that the components
(CT" CT6' CT6) of stress and (E" E6' E6) of strain are their principal values (Fig. 3(a». Similarly, from
cylindrical symmetry the components (CTr, CT6, CTz ) and (E" E6' Ez) are the principal stresses and
strains, respectively, in case b, where plane strain Ez =0 is assumed (Fig. 3(b».

Both cases are analysed in parallel, with a, b, or nothing annexed to the numbers of equations
and figures referring to the case a, b, or both, respectively. Displacement u occurring along the
radius r determines strain components through Er =u' and E6 =ulr, where the prime denotes
differentiation with respect to r. By taking the incompressibility into consideration, it is seen
that

R
u(r, t) = - U - ,

r
(la, b)

where U(t) is the radial inward displacement at the cavity surface. The locally greatest shearing
strain

'Y(r, t) = Er - E6 = r(~} (2)

attains the yield point strain klG at r = b(t) for U large enough to satisfy the inequality
blR $; I, where

(3a, b)

E-r-~.

Fig. I. Four-element model.
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PREVIOUS RESULTS
Spontaneous boring is accompanied by elastic response as shown in the distortional stress­

strain relationship of Fig. 2 by line OS, which can be thought of as representing a continually
distributed 'radius with the origin 0 corresponding to r =00, the point S to r =R, and
intermediate point E to r =b. If a rigid wall is installed in intimate contact with the cavity
surface at t = 0 immediately upon boring, then the deformation is kept constant with

U(t) = U(O) == Uo; bet) =b(O) == bo, (4)

where

Uo p Uo=L. (Sa, b)-:=-
R 40' R 20'

b& _ 3p b~ -l!. (6a, b)RJ- 4k' -W-k'

While the elastic region bo~ r< 00 is under constant stress, the inelastic region R~ r~ bo
undergoes stress relaxation and a point such as S in Fig. 2 moves vertically downward toward
the final point F on the work-hardening relation EH [1]. For t!1: 0 the radial stress has been
determined to vary as

_ p +4k-iL[1+~bfi +In b~ + (b~_1-In b~) e-(0+/0<)/'111]

30+1J- O? ?? ?
oAr, t) = for R ~ r ~ bo (7a)

for bo~ r < 00

-p +k-iL[l +~~+In ~+(~-!+ln~)e-llO+/o<)/'III]
G +IJ- 0 r r 2r 2 r

o-,(r, t) = for R~ r ~ bo (7b)

and the circumferential stress

for bo~ r<oc:

4k 0 [1 J:.. bfi I b~ (bfi 1 bfi) -[(0 )/ 1 ]- P - 3" 0 +IJ- 2+20 ? - n?+ ? - 1- n? e +/0< 'I 1

u6(r, t) = for R~ r ~ bo

for bo~ r<oo

~r-~.-

(8a)
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FiB· 2. Distortional stress-strain relation.
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2

) ]-p -k-- I+-~-ln~+ ~-I +ln~ e-HG +I'll'1l t

G+JJ. Gr r r r

O'o(r, t) = for R ~ r ~ bu (8b)

for

The axial stress for case b is given throughout by 0': = (0', + 0'8)/2. It is clear from eqn (6) that if p
is so small that

3p < I
4k = , (9a, b)

then no inelastic action is involved and the wan, when installed, would not be exposed to any
load. Thus, such cases as shown by eqn (9) are excluded in the subsequent discussions, because
of their triviality.

TlME·INDEPENDENT ANALYSIS
If the wall is deformable or bas not been installed, not only stress varies but deformation

keeps growing with increasing U(t}.1t is accompanied by increasing b(t) according to eqn (3). It
is seen from eqn (I) to eqn (3) that distortion also progresses according to

while equilibrium

k b2

'Y(r, t) = G7' (lOa, b)

_ r,_1(2)'
O'o-O"+20"-Zr r 0', ,

0'0 =0', + rO'~ =(m,)'

(lla)

(lIb)

is maintained.
Elastic behavior pervades the region b ~ r < 00, for which the absence of previous inelastic

straining ensures the constitutive relation

(2)

Upon substitution of eqns (l )-(3) and (11) this is integrated with respect to r under the boundary
condition 0',(00, t) = - P to give

4kb 3

O',(r, t) =37- p,

Equations (t I) and (13) are combined to give

(l3a, b)

(I4a, b)

In case b the assumptions of incompressibility and plane strain provide O'z = (0', + 0'8)/2. It is
noted that the stresses vary with time as the elastic-inelastic boundary moves in accordance
with eqn (3).

In the region R ~ r ~ b, the viscous and plastic elements are activated in Fig. 1 together with
the elastic springs. In view of the growing distortion, it is seen that a point such as S in Fig. 2
moves in a direction which has a positive horizontal component, depending on the property of
the wall installed, which may also behave in an elasto-visco-plastic manner. The point finally
settles down somewhere on the line segment FH. Determination is made of the final state by an
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elastic-plastic analysis, valid whether viscosity be fin tar Of nOnlinear. It is supposed that in the
final state the wall exerts on the cavity surface a reaction - o-,(R, ~), which is a function of the
final surface displacement. Negligence of the dashpot in Fig. 1 furnishes the constitutive
relation of linear work-hardening

(1 +~ )(O'r - O'e):; 2p.(£, - Ee) +2k.

This is combined with eqns (l~(3) and (II) to give

'I ) = -!L[~(b~),_4k]
0'"r, ~ G+,... 30 7 r'

O';(r ~) = -!L[E:!(~)'_2k], G+p. G, r'

(15)

(l6a)

(l6b)

where the symbol ~ in the subscripts indicates final values. Integration from' = , to , = bz, at
which use is made of the continuity with the elastic solution eqn (13), gives

Equations (II) and (17) are combined to give
4k G [1 b

3
b

3
]ue(r (0) = - p---- -+~~-In-:r, 3 0 +,.,. 2 20 r r'

G [ b
2

b
2

]0'8(' (0) = - p - k-- 1+1:.":! -In":! ., G+,.,. G, ,

The relation

O',+Ue
O'Z =-2-

(l7a)

(17b)

(18a)

(18b)

(l9b)

in case b follows from its validity at t = 0 and the continued validity of its incremental relationt
up to t:= 00. The boundary radius b,., is determined from the boundary condition ar r:: R.
depending upon the wall deformability. Suppose. for example, that the wall is linear with
stiffness s so that

- u,(R. (0) = s(Uz - UI). (20)

(21a)

where VI designates the inward displacement of the cavity surface at the initiation of its
intimate contact with the wall; it may be the displacement at the time when the wall is installed
after boring, or the wall may initially be installed inside the cavity with clearance. Combination
of eqns (3), (17) and (20) furnishes the relation

SR(b~ b~) 0 ( ~b~ I b~)_~
40 W-jp + G + IL 1+ ajp+ njp - 4k'

(21b)

tThis is established from the ftow rule associated with the hydrostatic pressure independent yield condition as before [I).
SiJK:e t~ state of st~ss w!th. eqn (19b) is ~he su~rposition of ~ hydrostatic pre~sure and simple shelr in the plane
perpenchcuIar to z-axIS. stram Increment dE: IS elastically related With stress increments at t .. O. It follows from the plane
Urain dE: = 0 and incompmsibility that du: - (du, +du. )/2 .. O.
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where b1 is related to VI through eqn (3). The values Vx and bx become maximum when no
wall is installed at all. The maximum values are determined by setting s = 0 in eqn (21) with the
help of eqn (3), and they also set upper bounds by themselves to VI and b1, whose lower
bounds are Vo and bo, respectively, in order to be of any physical meaning. For a rigid wall,
s == x, Vx = VI and bx=b l • The wall installation at t =0 in contact with the cavity surface
specifies VI = Voand b l = boo Specification Vx = VI = Vo, bx= bl = bo confirms the coincidence
of the herein derived results with the equations of the previous section in the limit t ~ x.

An example is given of the distribution of stress and displacement for the case 1.1. = G, p = 4k
in Fig. 3(a) and (b). Plotted downward are the dimensionless quantities - u,/p, - uJp and
- (2Glp )(uIR) as functions of rlR. Solid lines indicate the initial state upon boring. Dashed lines
and dotted lines refer to the final states attained in the absence of a wall and with a rigid wall
installed in contact with the surface at t = 0, respectively; in the former the boundary radius
changes from

bo== 1.442R, bo=2R (22a, b)

r
Ff-
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o

Fig. 3. Displacement and stress distribution; JJ. = G, p = 4k. (a) Spherical cavity. (b) Cylindrical cavity.
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Fig, 4. Effects of wall deformability and delayed installation; II- = G. p = 4k, (a) Spherical cavity, (b)
Cylindrical cavity.

to

b", = 1.546R, b", = 2.308R, (23a, b)

as against the constant displacement under eqn (22) in the latter.

EFFECTS OF WALL DEFORMABILITY AND DELAYED INSTALLATION
Curves are drawn in Fig. 4(a) and (b) in order to observe the effects of wall

deformability (solid lines) and delayed installation (dashed lines and dotted lines) on the load
(lower plots) and deformation (upper plots). It is again assumed that IJ. = G and p = 4k. The
solid lines relate UJUOand - u,(R, oo)/p to sR!(4G) under condition U. =Uo, to indicate that an
increase in the stiffness causes a rapid increase in the load and a rapid reduction in the
deformation until sR/(4G) reaches about one or two, whereas the changes are quite slow after
sR/(4G) exceeds about four or five. Dashed lines relate U",/Uoand - u,(R, oo)/p to UtlUounder
condition sR/(4G) = 1, and dotted lines under condition s = 0:;. It is seen that an increase in U1

reduces the load and increases the deformation in an approximately linear manner.
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